Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Московский государственный университет имени М.В. Ломоносова Механико-математический факультет Кафедра газовой и волновой динамики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование дисциплины (модуля):

Спец. Семинар «Научно-исследовательский семинар (НИС) по многофазным средам»

наименование дисциплины (модуля)

Уровень высшего образования: специалитет

Направление подготовки (специальность):

01.05.01 Фундаментальные математика и механика

(код и название направления/специальности)

Направленность (профиль) ОПОП: НИР

Фундаментальная механика

(если дисциплина (модуль) относится к вариативной части программы)

Форма обучения:

очная

очная, очно-заочная

Рабочая программа рассмотрена и одобрена на заседании кафедры газовой и волновой динамики (протокол № 15__, « 10 » июня__ 20_19 года)

Москва 2019

На обратной стороне титула:

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности «Фундаментальные математика и механика» (программы бакалавриата, магистратуры, реализуемых последовательно по схеме интегрированной подготовки; программы специалитета; программы магистратуры) в редакции приказа МГУ от 30 декабря 2016 г.

Год (годы) приема на обучение	
-------------------------------	--

- **1.** Место дисциплины (модуля) в структуре ОПОП ВО (*относится к базовой или вариативной части ОПОП ВО*, *или является факультативом*). Вариативная часть профессионального цикла при получении специализации «Газовая и волновая динамика».
- **2.** Входные требования для освоения дисциплины (модуля), предварительные условия (если есть): освоение дисциплины «Основы механики сплошных сред», Математический анализ, линейная алгебра, механика сплошной среды, дифференциальные уравнения.
- 3. Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Компетенции выпускников (коды)	Планируемые результаты обучения по дисциплине (модулю), соотнесенные с компетенциями
_СПК-1	Уметь решать задачи специализации Владеть: специальными разделами фундаментальной механики, методами анализа, а именно: 1) знать основные понятия, определения и свойства объектов исследования, основные термодинамические соотношения для многокомпонентных систем; 2) Знать основы тепловой и диффузионной моделей горения 4) знать классификацию волн детонации и дефлаграции в метастабильных средах, уметь решать задачи о движении течения газа при наличии в области волн дефлаграции или детонации.
СПК-2	Уметь проводить самостоятельно научные и прикладные исследования в специальных областях механики
СПК-3	Уметь применять знания специализации в будущей профессиональной деятельности

4. Формат обученияc	еминарские занятия, самостоятельная	работа (отметить,	если дисциплина или ч	асть ее реализуется с
использованием электронного	о обучения и (или) дистанционных обра	изовательных техно.	логий)	

- **5.** Объем дисциплины (модуля) составляет ___2__ з.е., в том числе ___36___ академических часов, отведенных на контактную работу обучающихся с преподавателем, 36 академических часов на самостоятельную работу обучающихся.
- **6.** Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий

Наименование и краткое содержание разделов и	Всего	Всего В том числе				
тем дисциплины (модуля), Форма промежуточной аттестации по дисциплине (модулю)	(часы)	Контактная работа (работа во взаимодействии с преподавателем) Виды контактной работы, часы			Самостоятельная работа обучающегося, часы (виды самостоятельной работы — эссе, реферат, контрольная работа и пр. — указываются при необходимости)	
		Занятия лекционного типа*	Занятия семинарского типа*	Всего		
1. Понятие гомогенных и гетерогенных систем. Химически однородные компоненты. Фазы. Агрегатные состояния.	2		1	1	1	
2. Гипотеза сплошности. Понятие макроскопически малого объема. Интенсивные и экстенсивные параметры. Введение средних параметров. Скорости диффузии.	2		1	1	1	
3. Химические реакции и фазовые переходы. Термодинамические условия равновесия для адиабатических, изотермических и изотермически изобарических систем.	2		1	1	1	
4. Условия равновесия фаз. Правило фаз. Фазовые переходы 1-го и 2-го рода.	2		1	1	1	
5. Равновесные фазовые переходы 1-го рода. Уравнение Клапейрона-Клаузиуса. Теплота фазового перехода.	2		1	1	1	

6. Неравновесные фазовые переходы. Модель Герца-Кнудсена.	2	1	1	1
7. Особые свойства поверхностной фазы.	2	1	1	1
Поверхностное натяжение. Неаддитивность				
термодинамических функций по массе.				
Аддитивность по фазе.				
8. Условия сохранения потоков массы, импульса и	2	1	1	1
энергии на поверхностях разрывов в				
многокомпонентных средах.				
9. Граничные условия сохранения потоков массы,	2	1	1	1
импульса и энергии на поверхностях раздела фаз в				
многокомпонентных средах.				
10. Рождение энтропии на поверхности разрыва.	2	1	1	1
Типы разрывов. Контактные разрывы. Перетекание				
массы через поверхность разрыва.				
11. Теорема о дифференцировании интеграла,	2	1	1	1
взятого по подвижному объему в				
многокомпонентных средах (Теорема переноса).				
12. Закон изменения массы для компонентов и фаз в	2	I		
смеси. Уравнение неразрывности для смеси в				
целом. Условие согласования. Вывод уравнений				
для подвижного и фиксированного объемов.		-		
13. Закон изменения количества движения для	2	1		
многокомпонентных и многофазных систем.				
Макроскопические и микроскопические вязкие				
напряжения в многофазных средах. Условия				
равновесия для многокомпонентных и для				
многофазных сред.				

	, , , , , , , , , , , , , , , , , , , ,	•		
14. Уравнение изменения полной энергии для гомогенной многокомпонентной смеси. Уравнение притока тепла. Изменение энтропии в многокомпонентной смеси. Соотношение Гиббса.	2	1	1	1
15. Уравнения изменения энергии фаз в гетерогенной системе.	2	1	1	1
16. О замыкании задач механики многофазных сред. Определение межфазных взаимодействий из решений локальных задач. Начальные и граничные условия.	2	1	1	1
Промежуточная аттестация устный доклад (указывается форма проведения)				6 (количество часов,** отведенных на промежуточную аттестацию)
17. Фильтрация жидкости в пористой среде. Уравнения Дарси. Влияние капиллярных сил.	2	1	1	1
18. Основные понятия теории фильтрации: пористая среда, пористость, просветность, скорость фильтрации, проницаемость. Закон Дарси. Простейшие модели пористых сред.	2	I	1	1
19. Фильтрация смесей нескольких жидкостей, учёт капиллярных эффектов, капиллярное давление, функция Леверетта, влияние типа смачиваемости на процесс вытеснения.	2	1	1	1

20. Неустойчивость, возникающая при вытеснении вязкой жидкости из пористой среды, механизм возникновения неустойчивости, факторы влияющие на развитие неустойчивости.	2	1	1	1
21. Решение задач: прямолинейно-параллельное фильтрационное течение, плоскордиальное фильтрационное течение, поршневое вытеснение.	2	1	1	1
22. Основы численного моделирования фильтрационных процессов, двумерная программа моделирующая вытеснение вязкой жидкости из пористой среды, описание работы с программой.	2	1	1	1

23. Исследование влияния отношения вязкостей на процесс вытеснения: практическая работа с программой	4	2	2	2
24. Исследование влияния числа Пекле на процесс вытеснения: практическая работа с программой.	4	2	2	2
25. Исследование зависимости коэффициента извлечения нефти от параметров контролирующих капиллярные эффекты.	4	2	2	2
26. Эксперименты по вытеснению модели нефти из образца керна на установке ПЛАСТ-АТМ10.	4	2	2	2
27. Численный расчёт процессов вытеснения с параметрами соответствующими эксперименту, подбор параметров, отвечающих за капиллярные эффекты, сравнение результатов с экспериментальными данными: практическая работа с программой.	4	2	2	2
28. Введение безразмерного параметра, характеризующего сморщенность поверхности раздела фаз при неустойчивом вытеснении.	4	2	2	2
29. Модели жидкостей с пузырьками газа и пара. Динамика одиночного пузырька, уравнения Рэлея-Ламба. Роль силы присоединенных масс при описании динамики пузырьковых жидкостей.	2	1	1	1
30. Волны вскипания в перегретых жидкостях. Аналогия с волнами горения.	2	1	1	1

Итоговая аттестация Защита курсовой работы			6
Итого	72	36	36

^{*}Внимание! В таблице должно быть зафиксировано проведение текущего контроля успеваемости, который может быть реализован, например, в рамках занятий семинарского типа.

^{**} Часы, отводимые на проведение промежуточной аттестации, выделяются из часов самостоятельной работы обучающегося

- 7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю)
- 7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости. Решение задач:
- 1. Понятие гомогенных и гетерогенных систем. Химически однородные компоненты. Фазы. Агрегатные состояния.
- 2. Гипотеза сплошности. Понятие макроскопически малого объема. Интенсивные и экстенсивные параметры. Введение средних параметров. Скорости диффузии.
- 3. Химические реакции и фазовые переходы. Термодинамические условия равновесия для адиабатических, изотермических и изотермически изобарических систем.
- 4. Условия равновесия фаз. Правило фаз. Фазовые переходы 1-го и 2-го рода.
- 5. Равновесные фазовые переходы 1-го рода. Уравнение Клапейрона-Клаузиуса. Теплота фазового перехода.
- 6. Неравновесные фазовые переходы. Модель Герца-Кнудсена.
- 7. Особые свойства поверхностной фазы. Поверхностное натяжение. Неаддитивность термодинамических функций по массе. Аддитивность по фазе.
- 8. Условия сохранения потоков массы, импульса и энергии на поверхностях разрывов в многокомпонентных средах.
- 9. Рождение энтропии на поверхности разрыва. Типы разрывов. Контактные разрывы. Перетекание массы через поверхность разрыва.
- 10. Теорема о дифференцировании интеграла, взятого по подвижному объему в многокомпонентных средах (Теорема переноса).
- 11. Закон изменения массы для компонентов и фаз в смеси. Уравнение неразрывности для смеси в целом. Условие согласования. Вывод уравнений для подвижного и фиксированного объемов.
- 12. Закон изменения количества движения для многокомпонентных и многофазных систем. Макроскопические и микроскопические вязкие напряжения в многофазных средах. Условия равновесия для многокомпонентных и для многофазных сред.
- 13. Уравнение изменения полной энергии для гомогенной многокомпонентной смеси. Уравнение притока тепла. Изменение энтропии в многокомпонентной смеси. Соотношение Гиббса.
- 14. Уравнения изменения энергии фаз в гетерогенной системе.
- 15. О замыкании задач механики многофазных сред. Определение межфазных взаимодействий из решений локальных задач. Начальные и граничные условия.
- 16. Испарение одиночной капли в смеси газов как пример простейшей локальной задачи определения источниковых членов в уравнениях динамики многофазных сред.
- 17. Горение одиночной частицы в атмосфере окислителя в газофазном и гетерогенном режиме.
- 18. Фильтрация жидкости в пористой среде. Уравнения Дарси. Влияние капиллярных сил.
- 19. Модели жидкостей с пузырьками газа и пара. Динамика одиночного пузырька, уравнения Рэлея-Ламба. Роль силы присоединенных масс при описании динамики пузырьковых жидкостей.
- 20. Волны вскипания в перегретых жидкостях. Аналогия с волнами горения.

7.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

__Вопросы к зачету:_____

- 1. Фильтрация смесей нескольких жидкостей, учёт капиллярных эффектов, капиллярное давление, функция Леверетта, влияние типа смачиваемости на процесс вытеснения.
- 2. Неустойчивость, возникающая при вытеснении вязкой жидкости из пористой среды, механизм возникновения неустойчивости, факторы влияющие на развитие неустойчивости. Типичные взаимодействия ударных волн и волн разрежения.
- 3. Решение задач: прямолинейно-параллельное фильтрационное течение, плоскордиальное фильтрационное течение, поршневое вытеснение.
- 4. Основы численного моделирования фильтрационных процессов, двумерная программа моделирующая вытеснение вязкой жидкости из пористой среды
- 5. Исследование влияния отношения вязкостей на процесс вытеснения.
- 6. Исследование влияния числа Пекле на процесс вытеснения.
- 7. Численный расчёт процессов вытеснения с параметрами соответствующими эксперименту, подбор параметров, отвечающих за капиллярные эффекты, сравнение результатов с экспериментальными данными.
- 8. Введение безразмерного параметра, характеризующего извилистость и неоднородность поверхности раздела фаз при неустойчивом вытеснении.

	ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)								
Оценка	2	3	4	5					
РОи									
соответствующие виды									
оценочных средств									
Знания	Отсутствие знаний	Фрагментарные знания	Общие, но не	Сформированные					
(виды оценочных			структурированные знания	систематические знания					
средств: устные и									
письменные опросы и									
контрольные работы,									
тесты, и т.п.)									
Умения	Отсутствие умений	В целом успешное, но не	В целом успешное, но	Успешное и					
(виды оценочных		систематическое умение	содержащее отдельные	систематическое умение					
средств: практические			пробелы умение (допускает						
контрольные задания,									

написание и защита			неточности	
рефератов на			непринципиального характера)	
заданную тему и т.п.)				
Навыки	Отсутствие навыков	Наличие отдельных навыков	В целом, сформированные	Сформированные навыки
(владения, опыт	(владений, опыта)	(наличие фрагментарного	навыки (владения), но	(владения), применяемые
деятельности)		опыта)	используемые не в активной	при решении задач
(виды оценочных			форме	
средств: выполнение и				
защита курсовой				
работы, отчет по				
практике, отчет по				
НИР и т.п.)				

8. Ресурсное обеспечение:

- Зверев И. Н., Смирнов Н.Н. Газодинамика горения. М., Изд-во Московского Университета, 1987г. 307 с.
- Нигматулин Р.И. Динамика многофазных сред. В 2-х томах. М. Изд-во Наука. 1987 г.
- Баренблатт Г.И., Ентов В.М., Рыжик В.М. Теория нестационарной фильтрации жидкости и газа. М.: Недра, 1972. 288 с.
- Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика: Учебник для вузов. М.: Недра, 1993. 416 с.
- Дмитриев Н.М., Кадет В.В. Подземная гидромеханика. Пособие для семинарских занятий. М.: Интерконтакт Наука, 2008, 174 с.
- Акулич А.Н., Смирнов Н.Н., Тюренкова В.В., Лапко В.А., Галкин В.А. Математическое моделирование распространения трещины гидроразрыва. Сургут, Изд. Центр СурГУ, 2016.
- Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений. М., Изд-во «Наука», 1978 г., 2-е издание, 687 с.

9. Язык преподавания.

Русский

10. Преподаватель (преподаватели).

Скрылева Е.И., Логвинов О.А., Смирнов Н.Н.,

11. Автор (авторы) программы.

Скрылева Е.И., Логвинов О.А., Смирнов Н.Н.,